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Abstract--An improved version of nonlinear low-Reynolds-number Ice model is developed. In this model, 
the limiting near-wall behavior and nonlinear Reynolds stress representations are incorporated. Emphasis 
is placed on 1:he adoption of Ry ( -  k~/2y/v) instead of y÷ (=- u~y/v) in the low-Reynolds-number model for 
predicting turbulent separated and reattaching flows. The non-equilibrium effect is examined to describe 
recirculating flows away from the wall. The present model is validated by doing the benchmark problem 
of turbulent flow behind a backward-facing step. The predictions of the present model are cross-checked 
with the existing measurements and DNS data. The model performance is shown to be generally 

satisfactory. 

Ill 

1. INTRODUCTION 

Separated and reattaching flows occur in a host of 
practical engineering situations. Examples may be 
found in the neighborhood of airfoils, turbine blades, 
diffusers, and many flow-relevant systems. The flow 
separation and subsequent reattachment process gen- 
erates extremely complex flow and heat transfer 
characteristics, among others, the separated flow, 
which then reattaches in the downstream locations, is 
believed to give ri,;e to flow unsteadiness, pressure 
fluctuations, noise, ,etc. Also, flow separation tends to 
enhance heat and mass transfer and augment mixing. 
Comprehensive knowledge of flow structure is an 
essential building block to analyze the attendant trans- 
port phenomena. This research program represents a 
multi-prong attack on the problem of turbulent flow 
and heat transfer processes in separated and re- 
attaching flows [1-3]. In this paper, emphasis is placed 
on flow structure. In the subsequent papers, detailed 
discussions will be given on the heat transfer 
characteristics. 

Among the various turbulence models to calculate 
separated and reattaching flows, the k-e  turbulence 
model is widely used owing to its simplicity and effec- 
tiveness rather than more sophisticated higher-order 
models [1-5]. However, conventional k-e  models are 
known to suffer from some deficiencies. One major 
deficiency of the standard k-e  model is that the effects 
of wall-proximity are not well reflected in the sep- 
arated and reattaching regions. A variety of low- 
Reynolds-number w,~rsions of the k-e  model have been 
proposed by introducing the damping functions and 
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other extra terms to account for the near-wall effects. 
However, most of the existing models contain the wall 
friction velocity u~ [4]. If  these us-dependent models 
are applied to separated and reattaching flows, diffi- 
culty arises at the separation and reattachment points 
(u~ = 0). Obviously in these regions the wall shear 
stress cannot be clearly defined and the law of the wall 
is no longer applicable. Furthermore, the turbulent 
structure with high turbulence levels in separated and 
reattaching regions is different from that in a turbulent 
boundary layer which is determined based on local 
equilibrium arguments. In the present study, a new 
low-Reynolds-number version without the usage of u~ 
is proposed with the aid of direct numerical simulation 
(DNS) data [6]. Attention is given to a possible 
improvement of the near-wall behavior of the e equa- 
tion. The present model results for separated and re- 
attaching flows are shown to be in satisfactory 
agreement with the recent data [7]. It is notable that 
Abe et al. [8] used the Kolmogorov velocity scale 
instead of u~ to deal with the near-wall behavior of 
separated and reattaching flows. 

In addition to the consideration of above-men- 
tioned near-wall effect, the effect of non-equilibrium 
away from the wall is also taken into account in the 
present model. In the recirculating region, it is known 
that the production of turbulent energy Pk is not bal- 
anced with its dissipation rate e, i.e. Pk/e ~ 1 [2, 9]. In 
order to address this point in the present study, the 
non-equilibrium effect (Pk/e) is incorporated in the 
wall damping function (f~) and in the anisotropic 
production of e in the near-wall region (C,0. 

Another significant deficiency in the standard Ice  
models is the inability to properly account for stream- 
line curvature, rotational strains, and other body- 
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NOMENCLATURE 

Cf mean skin friction coefficient, Rt 
2Zw/(pU~) Ry 

C~, C~1, C,2 model constants of standard k -  
e model S 

C*~ model constant of additional St 
production of dissipation, To 
C01 (0.95 + 0.05Pk/e) Tw 

Co free stream specific heat -uiuj 
D channel width upstream of backward- Ui 

facing step u~ 
ER expansion ratio of backward-facing u~ 

step, ( H + D ) / D  XR 
f~,fl,f2,ft model functions of low-Reynolds- x 

number k-e model 
f,~ damping function in wall-affected y 

region 
f~2 correction of non-equilibrium eddy y+ 

viscosity away from the wall 
fw~,fw2 wall-reflection functions 
h heat transfer coefficient, gl"/(Tw - To) 
H height of  backward-facing step 6 
k turbulent kinetic energy 
Pk production of turbulent energy 6u 

e 
Pr, Prt molecular and turbulent Prandtl 

number 
q~, wall heat transfer rate per unit area v, v~ 
Ren Reynolds number based on step P 

height, UoH/v al,, tL 
Rein Reynolds number based on channel 

bulk velocity, 2U~f/v rw 
Reo Reynolds number based on 

momentum thickness, UoO/V 
Re~ Reynolds number based on friction 

velocity, u~6/v 

turbulent Reynolds number, k2/ve 
nondimensional length from wall 
surface, kl/Ey/v 
mean strain rate, x/2S~Sv 
Stanton number, h/UoPoCo 
free stream temperature 
local wall temperature 
Reynolds stresses 
mean velocity 
friction velocity, x/(Zw/p) 
Kolmogorov velocity scale, (ve)~/4 
reattachment length 
Cartesian coordinate in streamwise 
direction 
Cartesian coordinate normal to 
streamwise direction 
nondimensional length from wall, 
u~y/v. 

Greek symbols 
half width of channel 
Kronecker delta 
dissipation rate of turbulent energy, 
v( au,/ axj) ( aui/ axj) 
kinematic viscosity and eddy viscosity 
density 
model constants in turbulent diffusion 

of  k-e model 
wall shear stress. 

Subscripts 
0 reference value at inlet to backward- 

facing step. 

force effects. In the k-e models, the principal axes of 
the stress tensor are aligned with those of the mean 
strain rate tensor. However, in complex turbulent 
recirculating region, these axes are not always coinci- 
dent with each other. In order to consider these effects, 
a nonlinear k-e model is applied in the present study. 
A literature survey reveals that a considerable research 
effort has been directed toward the development of 
nonlinear or anisotropic generalization of eddy- 
viscosity models [10]. The present model adopts the 
Reynolds stresses up to the second-order expansion. 
The implementation procedure of the model will be 
recapitulated in the following sections. 

In summary, we propose an improved version of 
nonlinear low-Reynolds-number Ice model, in which 
the near-wall effect of separated and reattaching flows 
and the nonlinear representation for Reynolds stresses 
are fully incorporated. Emphasis is placed on the 
usage of Ry (-- kl/2y/v), instead o fy  + (=  yuJv), in the 
low-Reynolds-number model, together with the wall 

limiting behavior of the e-equation. The non-equi- 
librium effect is taken into account to deal with the 
complex recirculation region for separated and reat- 
taching flows away from the wall. In particular, the 
nonlinear model up to second-order expansion con- 
sidering the effect of near-wall behavior is also exam- 
ined. The validation of the improved version is then 
applied to the turbulent flow behind a backward-fac- 
ing step, which is frequently used for benchmarking 
the performance of turbulence models for separated 
and reattaching flows. If  a turbulence model can 
reproduce this flow correctly, then the possibilities 
that the model is equally successful with other types 
of turbulent flow would be high. As mentioned earlier, 
the accurate prediction of heat transfer in separated 
and reattaching flows is impossible without reliable 
predictions of the flow [8], The predicted results of the 
present model are compared and evaluated with the 
relevant measurements [11-14] and computation [8], 
especially with the DNS data of a backward-facing 
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step flow [7]. Furthermore, comparisons are extended 
to the heat transfer in a backward-facing step flow 
[15]. 

2. LOW-REYNOLDS-NUMBER k-~ MODEL 

2.1. Governing equations 
For a stationary, incompressible turbulent flow, 

the governing equations can be written in Cartesian 
tensor notation as 

OUi 
- 0 ( 1 )  

au, 1oe a (2) 

where Uj and uy are the j th  components of the mean 
and fluctuating velocities, respectively, P is the mean 
pressure, p and v are the fluid density and kinematic 
viscosity. The unknown Reynolds stress - u~uj can be 
expressed, by using the concept of eddy viscosity vt : 

- -  2 . 
- u~uj = 2v~S o-~kb~ 

k 
( o,,.S,.~--~ S,~Sm.6,3 .+_ C1 vt ~ ,, 1 

k 
"~- C2 v , ~ (O),mSmj "~- (OjmSmi) 

+ C3~) t ((:)imO)jm --3C9,.nO)m.6ij) (3) 

k 2 
vt = C,f~ T ( 4 )  

0k O 

UJaxj axj L\ -,~Jaxjj 
+p1 2 3 4 +P~ +P~ +P~- -y .  (6) 

In the above equations, -uiuj  is expanded up to the 
second-order term in a nonlinear k-e model [10], 
where 

S U = 0.5(U,a + ~.,) co~ = 0.5(Ugj-  Uj.3 (7) 

are the mean strain rate tensor and mean vorticity 
tensor, respectively. Ct, Cz, C3, C u, ak and a, are the 
model constants, f represents the model function for 
turbulent diffusion. Thefu function reflects the effects 
of wall-proximity and low-Reynolds-diffusion. Thefu 
function reflects the effects of wall-proximity and low- 
Reynolds-number, respectively. The production of 
turbulent energy, Pk is defined as Pk - -u~uj O Ui/~X j. 
In the e-equation, 91 2 3 4 P , , P ,  and y I ~, Po, represent the 
mixed production, production by mean velocity gradi- 
ent, gradient production, turbulent production and 
destruction in sequence, respectively [6]. 

2.2. Model functions fu and ft 
In the near-wall region, the asymptotic behavior 

of instantaneous velocity components maintains 
the relations uocy,  vocyZ and wocy, and e = v  
(Oui/axj)(Oui/~xj) ~ ew for y --* 0. Consequently, the 
near-wall as__ymptotic behavior of wall turbulence 
is k oc yZ, uv oc y3 and vt oc y3. Then, the damping 
functionfu has to satisfy the relation,f~ oc y -  ~ [5]. The 
appropriate modeling of vt from the buffer to log-law 
region is critical to the prediction of mean flow field. 
Most o f f ,  functions in the literature are constructed 
by using the friction velocity u, [4]. As emphasized 
in the introduction, if we applied these models to 
separated and reattaching flows, difficulties are enco- 
untered at a separation point (u, = 0) and at a reat- 
taching location (u~ = 0). Instead of y + ( =  u~y/v) in 
the f ,  model function, the length scale variable Ry is 
employed in the present study, which is defined by 
Ry = k~/2y/v. It is noted that the Ry function was alre- 
ady used in other models, e.g. Lain and Bremhorst [16] 
and Zhang and Sousa [17]. However, these previous 
models fail to satisfy the wall-limiting behavior, i.e. 
fu oc y -  1. The usage of Ry instead of y+ implies that 
the friction velocity u~ is replaced by k ~/2 to account 
for separated and reattaching flows. 

The form similar to the Van Driest damping func- 
tion has been used in many previous models for rep- 
resenting the wall-proximity effects [4], in which the 
model constant C~, is set to be constant, C u = 0.09. 
Whenf ,  is introduced to predict the damping of eddy- 
viscosity near the wall, then fu must approach 1 far 
away from the wall, which indicates that the standard 
k-e model form is recovered. However, the local equi- 
librium (Pk = e) is no longer satisfied in the recir- 
culating region away from the wall. In order to incor- 
porate the non-equilibrium effect (Pk # e), variations 
of Cu are allowed in the present study, i.e. f ,  =f,~f ,2 .  
By using this expression, it is intended that f ,  takes 
into account the two major dynamic effects; f , i  sig- 
nifies the effect of wall proximity in the near-wall 
region andf~2 represents the effect of non-equilibrium 
away from the wall. 

In the first, the distribution of eddy-viscosity, f , l ,  
near the wall (C, = 0.09) can generally be obtained 
by introducing the Van Driest damping function [4], 

f~l  = (1 - - /wl ) (1  "~ lOfwl/R~ 25) (8) 

fw, = exp [-- (Ry /80 )  2] (9) 

where R t denotes the turbulent Reynolds number, 
R t = k2/ve. The wall-reflection functionfwl represents 
the effect of wall-proximity. Obviously,ful satisfies the 
limiting behaviorful oc y -  1. 

Next, it is known that C~ varies as a function of 
Pk/e, away from the wall (f~l = 1), as demonstrated 
in the experimental findings of Rodi [9]. In order to 
formulate the C~ form in the non-equilibrium region, 
the following relation is derived from the algebraic 
stress model for an attached two-dimensional flow [9], 
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- -  2 ( 1 - C 2 ) ( C , - I + C 2 P k / e )  k 20U 

3 ( C l - l + P k / 8 )  2 e Oy 

k ~ OU (10) 
= C.L: 7 ey 

where C~ and C2 are the model constants. From the 
above relation, the model function flt2 c a n  be formu- 
lated, which accounts for the non-equilibrium effect 
away from the wall. A simplified function f~2 is pro- 
posed in the present study, 

(C.2 + C,.3PUe) 
fu2 = C~, (11) 

(C.2 + Pkle) z 

where the model constants are fitted by using the 
experimental data [9] as Cu~ = 2.62, C#2 = 1.2 and 
C,3 = 0.646, respectively. In summary, the damping 
function is expressed as f ,  =fulfu2, where ful varies 
mainly with the variable Ry in the wall-affected region, 
while the variation off,2 plays a leading role for the 
correction of non-equilibrium eddy-viscosity away 
from the wall. 

The turbulent diffusion terms of k and e, in general, 
modeled by a gradient-diffusion type. The values of 
the model constants ak and a, are usually taken to be 
1.0 ~< trk, ~r, ~< 1.4, as shown in [4]. However, as seen 
in the budgets of k and e from the DNS data [6], the 
roles of turbulent diffusion in the near-wall region are 
substantial. Accordingly, a modified model function 
ft is needed, and this concept has been embedded in 
the model of Nagano and Shimada [18]. The model 
constants employed are, as denoted in equations (5) 
and (6), f fk=l .2 ,  ~r~=l.3 and f t = l + 3 . 5 e x p  
[-(Rt/150)2]. This relation implies that the model 
constants cr k and a~ are adjusted as a function of tur- 
bulent Reynolds number Rt in the near-wall region. 

2.3. Near-wall modelin9 oft-equation 
According to the order-of-magnitude analysis in the 

e-equation, the dominant elements are the turbulent 
production rate P~ due to vortex stretching and the 
viscous destruction 7 in the high-Reynolds-number 
region away from the wall [19]. On the contrary, the 
production terms P~ and P~ become increasingly 
important near the wall. In order to balance the e- 
budget, these effects should be incorporated in the 
turbulence models. By following the scaling argument 
of Rodi and Mansour [19], the magnitude of the pro- 
duction terms P~ and p2 relative to the terms p 4 _ 7  
may be estimated to be 

P~-P~ o(Sk I~=O(R) (12)  
p4_~ t e RVV 

where S represents the magnitude of strain rate, 
S = x/(2S~jSo) and R is the ratio of the timescale of 
dissipative motions to the timescale of mean strain 
fields. Based on this reasoning, the P2, P~, p4 and 7 
terms can be modeled in a way similar to the prior 
models [4, 5, 18], 

, 8 82 
e,'+e~+e~-~= c0,Pk~-cj2~. (13) 

Here, the model constant C*l has the form, 
C* = C~(0.95+0.05Pk/e). Clearly, in the present 
model, the non-equilibrium relation (Pk/e) is properly 
taken into consideration, and this aspect takes care 
of the additional production of dissipation by local 
anisotropy. However, the model constants C~I and C~2 
are set to take the standard values of 1.45 and 1.9, 
respectively. 

The model function f2 , which deals with the sum of 
source and sink terms in the near-wall region, is 
defined as, 

f2 = (1 +f2,)(1 --fw2)fz2 (14) 

where the two leading terms, i.e. (1 +f21)(1 -fw2), rep- 
resent the effect of wall-proximity andfz2 denotes the 
effect of free-turbulence [5]. The model functions f:~, 
fw: are obtained by fitting the DNS data [6], which 
satisfy the limiting behavior of the wall : 

f21 = exp ( - 2  x 10-4R13)(1 - e x p  ( -2 .2R°5) )  

(t5) 

fw2 = exp (--5.5 x 10-ZRy--5.0 x 10 5Ry3 

--7.0 x 10-9RyS). (16) 

As seen in equation (15),f2~ is a function of the shear 
parameter R, which is defined as 

where R was derived from the scaling argument [19]. 
The effect of free-turbulence is also taken into con- 
sideration in the functionfa2, 

f22 = 1--0.3exp (--(Rt/6.5) 2) (18) 

which is obtained by curve-fitting the experimental 
results of grid-turbulence [20]. 

In the standard k-e model, the production term 
p3 is generally neglected. However, the DNS data 
near the wall reveals that p3 is comparable to the 
turbulent diffusion term in the t-budget, and, there- 
fore, it is needed to balance the exact near-wall 
behavior of k and e. Rodi and Mansour [19] derived 
the following model terms by manipulating the Nav- 
ier-Stokes equations, 

p3 = ClVV, U~j+C2v(k)k jU jUjj (19) 

where CI = 1.0, C2 = 0.006. On the basis of this 
model, a slightly modified model is introduced in the 
present study by utilizing the wall-reflection function 
fwl. This approach ensures that p3 be located within 
the wall layer (y+ ~< 30). 

2 // ~ k 
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where S* is a modified strain rate parameter. The 
model constants Cl and C2 are set as C1 = 1.0, 
C2 = 0.006, respectively. As can be seen in equation 
(20), the first derivative of  mean velocity is replaced 
with a simplified mean strain rate S*. In the vicinity 
of the wall, the mean strain rate parameter S is affected 
mainly by the term 0 U/Oy, 

OU "Cw/p u~ 
S* . . . .  (21) 

Oy P ' q - V  t P"~-  Pt  

By using the Kolmogorov scales, q =  ( v 3 / e )  TM, 
v = (ve) 1/4, we obtain the following formulation in 
concert with the relLations vq/v = 1 and 5 + = ve/u~, 

= ( 1 ~  '/4 
u~ \--~ / v. (22) 

Consequently, S* has a simplified form, 

S* = C, x/(ve). (23) 
V d - V  t 

Here, it can be seen that the model constant C~ is 
replaced by the term 1/x/z + . The DNS data [6] reveals 
that the influence of 1/x/z + on S* within the wall layer 
(y+ -N< 30) is shown to be negligible. Thus, C~ is set as 
C~ = 2.75. It is recai[led that S* is used in the p3 model 
(/wl). By choosing S* instead of equation (19), it 
shows that the near-wall behavior in separated and 
reattaching flows can be resolved with a good accu- 
racy. 

The summarized form of z-equation, which is used 
in the present study, is expressed in the following : 

05 ~ v+Z~ 
Ox, - Ox, 

e 5 2 
+ 1.45(0.95+O.05Pk/e)Pk ~ -- 1.9A ~- 

3. NONLINEAR k-e MODEL FOR REYNOLDS- 
STRESS TENSOR 

As is well understood, the standard Ice models have 
some critical deficiencies [10]. One major deficiency is 
the inability of the model to properly predict the 
effects of Reynolds stress relaxation. Another 
deficiency is that the model is oblivious to the presence 
of rotational strains in turbulent flows. In a recir- 
culating flow past a backward-facing step, for exam- 
ple, the principal axes of Reynolds stresses are not 
always aligned with those of  mean strain rates. In an 
effort to alleviate these shortcomings, a nonlinear or 
anisotropic generalization of eddy viscosity models 
has been vigorously pursued [10]. Details regarding 
the literature survey and relevant models can be found 
in the review paper of Speziale [10]. 

Speziale constructed a nonlinear Ice model with the 

second-order term and this model was tested to the 
flow past a backward-facing step [10]. Horiuti exam- 
ined the roles of higher-order terms, i.e. the third- 
order term in the nonlinear model, and he discussed 
the relationship with the algebraic stress model [21]. 
Recently, Craft et al. [22] put forward a third-order 
anisotropic representation for Reynolds stresses, and 
the model was applied to impinging jets. In the present 
study, the roles of third-order term have been scru- 
tinized, however, the relatively small effects of  the 
third-order term are estimated. Computations were 
made for the flow behind a backward-facing step, and 
the results indicate that the nonlinear model up to the 
second-order expression depicts the dominant flow 
structures satisfactorily. The Reynolds stresses up to 
the second-order expansion, which were employed in 
the present study, are 

, 
uiuj = ~kf i j -  2vtSij + O.6vt ( S i m S m j - ~  SmnSmnri])  

k 
-+- 0.4v t ~ (OJimSmj ~- O)jmSmi ) 

k l 
"[- 0 . 0 0 5 •  t ~ (O,)im(l)jm - -  ~OJrnnO)mn(~i3- ) . (25) 

In the above, the model constants were determined by 
using the experimental results [23]. 

4. APPLICATION TO ATTACHED BOUNDARY 
LAYER FLOWS 

The thrust of the present model is to predict a sep- 
arated and reattaching flow without using y+. 
However, it is important to ascertain the generality 
and accuracy of the present model to an attached 
boundary layer. Toward this end, we have applied the 
model to a fully-developed channel flow, for which 
turbulence quantities are available from the DNS data 
[6]. 

The profiles of mean velocity, turbulent kinetic 
energy and its dissipation rate are exhibited in Figs. 
1-3, respectively. The selected Reynolds numbers are 

2 5  . . . . . . . .  , . . . . . . . .  i 

P r e s e n t  m o d e l  

2 0  o o o D N S [ 7 ]  

I 5  g~ '~ ~ ' 

0 I / Rer  = 3 9 5  

0 I , . . . . .  , . . . . . . . .  , . , 
i 10 100  y+ 

Fig. 1. Comparison of the predicted U with DNS in channel 
flow (Re~ = 180 and 395). 



2662 TAE SEON PARK and HYUNG JIN SUNG 

8 

7 Rer  = 3 9 5  P r e s e n t  m o d e l  

6 ...................... AKN m o d e l  
k + o o o DNS[7] 

5 

3 

2 

1 

0 t i i i 

0 20 40 60 80 I00 y+ 

Fig. 2. Comparison of the predicted k in the near-wall region 
(Re~ = 395). 

q 
0.004 

0.003 

0.002 

0.001 ....... ~ AKN_,mod [0.e , . . . .  r~,l " ~ o  
o o o S a m u e l  & J o u b e r t E 2 4 j  

0.0 ' ' ' 
0 1 2 3 

x(m) 
Fig. 4. Comparison of the predicted Cf in a strong adverse 

pressure gradient flow. 

Re¢ = 180 and Re¢ = 395, for which DNS data exist. 
For mean velocity, the present model results are in 
good agreement with the DNS data in Fig. 1. The 
profiles of turbulent kinetic energy k + are shown in 
Fig. 2, in which the present model is seen to be in 
excellent agreement with the DNS data. As addressed 
in the Introduction, the model of Abe, Kondoh and 
Nagano [8] (hereafter referred to as AKN model) used 
the Kolmogorov velocity scale instead of the friction 
velocity (u¢) to account for a separated and reat- 
taching flow. In order to verify our model, the AKN 
model is adopted for comparisons. This is based on 
the belief that the AKN model is recently developed 
and can be regarded as a reliable model for predicting 
turbulent separated and reattaching flows. As shown 
in Fig. 2, the AKN model slightly underpredicts over 
the region y+ ~< 30. This may be attributed to the 
overprediction of e in this region. The near-wall 
behavior of e is displayed in Fig. 3. The e+ profiles 
of AKN model overpredict in the region y+ ~< 30. 
However, the present model results follow the DNS 
data fairly well. Furthermore, the maximum value of 
e + very close to the wall is clearly displayed. 

As stressed in Nagano and Tagawa [5], the existing 

0.25 

0.20 
~÷ 

0.15 

0.I0 

0.05 

0 .00 
0 .20 

0 .15 

0.10 

0.05 

0.00 

P r e s e n t  m o d e l  

...................... AKN m o d e l  

o o o DNS[7] 

i k 

/ / " ' '  .. . = 

i t t l 

20 40 60 80 
y+ 

Fig. 3. Comparison of the predicted s in the near-wall region 
(Re~ = 180 and 395). 

Ice  models do not predict satisfactorily with adverse 
pressure gradient. Accurate prediction of an adverse 
pressure gradient flow is crucial, in particular, in ana- 
lyzing complex turbulent flows. In an effort to assess 
the capability of the present model, the strong adverse 
pressure gradient flow is adopted for testing. The pre- 
dicted result for Cf is shown in Fig. 4, compared with 
the prediction of the AKN model and the experiment 
of Samuel and Joubert [24]. Obviously, the present 
prediction is in excellent agreement with the exper- 
imental data. 

Based on the reliable present model, the thermal 
field in a fully developed flow with a uniform wall 
temperature is calculated in Fig. 5, where the relevant 
DNS data is also available [25]. To analyze the tur- 
bulent heat transfer, the eddy diffusivity for heat is 
used together with the most probable turbulent 
Prandtl number concept, i.e. Prt = 1.0. The predicted 
results are compared with the computed data of AKN 
model [8] and the DNS data [25]. As seen in Fig. 5, 
the present model gives satisfactory results. 

5. APPLICATION TO BACKWARD-FACING STEP 
FLOWS 

5.1. Numerical procedure 
The finite-difference equations are discretized using 

the hybrid linear and parabolic approximation 

2 0  . . . . . . .  , . . . . . . . .  , 

Present model 
......................... AKN model 

T + 15 o o o DNS[25] 

I0 

f + =Pr y+ ,/' ~ Y S '  Re=180  

0 , t i , , , , , 1  , , i , t l , l t  

10 100 y+ 

Fig. 5. Comparison of the predicted T with DNS in channel 
flow (Ret = 180). 
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(HLPA) scheme with second-order accuracy. A non- 
staggered variable arrangement is adopted with the 
momentum interpolation technique to avoid the pres- 
sure-velocity decoupling. The coupling between pres- 
sure and velocity is achieved by the SIMPLEC pre- 
dictor-corrector algorithm, which is an improved 
version of the SIMPLE algorithm. The set of dis- 
cretized linear algebraic equations is solved by a stron- 
gly implicit procedure (SIP) [26]. 

The inlet and outlet of the computational domain 
of the backward-step flow are located 5H upstream 
and 30H downstream of the separation point, respec- 
tively. Here, H represents the step height. The inlet 
conditions are given from the experimental 
conditions. For comparison purposes, several test 
cases are summarized in Table 1. The no-slip bound- 
ary conditions are employed at the walls: 
U = V = k = O, ew = vO2k/Oy 2, T = Tw and t?p/Oy = O. 

The Neumann conditions are applied at the outlet. 
The computations were implemented on a CRAY- 

YMP supercomputer, and a typical CPU time was 
approximately 3 h for one set of calculations. Con- 
vergence was declared when the maximum normalized 
sum of absolute residual sources over all the com- 
putational nodes was less than 10 -4. Several trial cal- 
culations were repeated to monitor the sensitivity of 
the results to grid size. The non-orthogonal finer-res- 
olution grid systems were adopted, where the grid 
points were crowded near the wall boundaries and 
clustered in the recirculating region. The grid con- 
vergence was checked, the outcome of these tests was 
found to be satisfactory (201 x 121). 

5.2. Resu l t s  a n d  discussion 
All the computations of the backward-facing step 

flow are performed with the non-orthogonal grid 
system. Table 1 lists the conditions for the experiments 
on the backward-facing step flow [11-15]. Especially, 
the direct numerical simulation of turbulent flow over 
a backward-facing step by Le et aL [7] is of interest, 
in which the step-height Reynolds number is relatively 
low (Ren  = 5100). 

First, the effect of non-equilibrium of the present 
model is considered. This effect is represented in the 
damping function of eddy viscosity (fu =f,~f~2) and 
in the model constant C*~ = C~l(0 .95+O.05Pk/e)  in 
the e-equation. The calculations are carried out for 
the eddy viscosity (vt) and the results are displayed in 

Oil XR-~.IH o ~ \  XR-}- 1.9H 

o Dr v0/ I 
°2  Seegmiller[11] I )pb 

/ / 
0 I I 

0 1000 0 1000 

Fig. 6. Comparison of the predicted vt with experiment. 

Fig. 6 for the recirculating region (XR--2.1H) as well 
as for the relaxing region (XR+ 1.9H). The dashed 
line represents the model of local-equilibrium state, 
i.e. f ,  = f , l  and Pk = e. Comparisons are made with 
the experimental data of Driver and Seegmiller [11] 
for ReH = 38 000. It is encouraging that the present 
results are in broad agreement with the experimental 
data. The agreement is better in the recirculating flow 
region rather than in the recovery region. This appears 
to be a common feature of other reattaching flow 
calculations [27, 28]. 

Comparisons are extended to the distributions of 
the turbulent kinetic energy ( k / U  2) and the cor- 
responding Reynolds stress ( - ~ / U 2 ) ,  as shown in 
Fig. 7. The predicted results of the turbulent energy 
by the two models agree reasonably well with the 
experimental data except in the upper recirculating 
region. A closer inspection of the distributions in the 
recirculating region indicates that the present model 
prediction (Pk 4: e) is in better agreement with the 
experiment than the case of the local equilibrium 
model (Pk = e). As for the Reynolds stress, the com- 
putational results of the non-equilibrium model are 
more consistent with the experimental data, especially 
in the recirculating region. These comparisons 
reinforce the capability of the present non-equilibrium 
model for predicting the recirculating flows over a 
backward-facing step. 

The second step is to investigate the nonlinear rep- 
resentation for Reynolds stresses, as in equation (25). 
For comparison, the linear model of Abe et  al. (AKN 
model) is also employed. Calculations are carried out 
for the flow over a backward-facing step (ReH = 5100) 
and analyses are made with the DNS data of Lee t  

Table 1. Computational conditions for backward-facing step flows 

Case ER ReH Reo 6slH Grid 
(non-orthogonal) 

Driver and Seegmiller [11] 1.125 38 000 5000 1.5 201 × 121 
Adams and Johnston[12] 1.25 36 000 3700 1.0 201 × 121 
Kim et al. [13] 1.50 46 000 1500 0.25 201 × 121 
Eaton and Johnston[14] 1.667 38 000 1000 0.23 201 × 121 
Vogel and Eaton[15] 1.25 28 000 3370 1.1 201 × 121 
DNS[7] 1.20 5100 667 1.1 201 × 121 
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k/U~ 
0.0 0.04 

- - -  pk=c _ _  
o o Eaton & Johnston[14] - u v / U ;  

0.0 0.02 

4 6 8 1 0  X/H 

Fig. 7. Comparison of the predicted k/U~ and - ~ / U o  2 with 
experiment. 

al. [7], as shown in Fig. 8. It is interesting that the 
predictions of U/Uo and - ~ / U ~  by the two models 
are similar, but noticeable differences are found in the 
streamwise velocity fluctuations, x/u2/Uo. As can be 
seen in Fig. 8, the A K N  model gives slightly lower 
values than the DNS data. This discrepancy is thought 
to be attributable to the isotropic assumption of the 
A K N  model, which is also addressed by Abe et aL [8]. 
Although the present model is not entirely consistent 
with the DNS data, the present nonlinear model 
results are in better overall agreement well the DNS 
data in the recirculating region than the linear model. 

Further evidence of the present model performance 

3 

~" model ] ~ I I  
2 ___ ~ mode] . ~  ,~1 _ql 

, 

0 | . . . .  

3 

3 

u/uo 0,0 1.0 / 
o.o'f~o.z 

-~V/L~ 
0.0 0.02 

ib 19 X/H 

Fig. 8. Comparison of the predicted U/Uo, ~/u-'Z/Uo and 
-~v/U~ with DNS. 
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A Adams & Johnston[12] 
Kim et al.[la],[2~] 
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1.0 1,2 1,4 1.6 1.8 
ER 

Fig. 9. Comparison of the predicted Xk with experiment. 

is seen in the comparison of the calculated reattach- 
ment lengths, XR/H, with the experimental results. As 
in Fig. 9, the present computational results are in 
excellent agreement with the experiments. Further- 
more, the agreement is widely distributed to the 
ranges, where the adopted experimental conditions 
cover the far-ranges, 5100 ~< ReH <~ 46 000 and 
1.125 ~< ER <~ 1.667. Here ER denotes the expansion 
ratio. The reattachment lengths by the standard k-e 
model are seen to be underpredicted. It is also 
observed that, at least in the present computations by 
utilizing our numerical code, the A K N  model predicts 
slightly lower values of reattachment length. 

For  the prediction of turbulent heat transfer near 
the wall-region of separated and reattaching flows, 
accurate calculations of eddy viscosity are indis- 
pensable [1, 8]. Since the majority of the heat transfer 
resistance occurs in the near-wall region, the level of 
skin friction is crucial to the prediction of heat trans- 
fer. The computed wall shear stress coefficient Cf 
against a nondimensional streamwise coordinate 
X* = (X--XR)/XR is shown in Fig. 10, together with 
the measurements of Eaton and Johnston [14]. It is 
seen that the present non-equilibrium model pre- 
diction in the recirculation region is in good agreement 

0.003 

0.002 
/ / ~ 0 / 9 ' ~  O 0 0 0 

0.001 

Cf 0.0 ~ , ~  ReH : 3 8 , 0 0 0  

-0.001 \ ,~QY o o o  EaLon k 

-0.002 "'-" Johnston[14] 

-°°°30 10 X/H I p~t~ 
1,25 . . . .  P'=C 

1.00 
St " ' - .  
Stmax 0.75 

0.50 

o.a5 ,u o o o  Vogel & Eaton[ts] 

0.00 ' ' ' ' ' ' 
- 0 1 2 

X' 
Fig. 10. Comparison of the predicted Cf and St/Stmax with 

experiment. 
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with the experiment. This implies that the present 
model captures well the strong inhomogeneous flows 
in the recirculating region. The normalized Stanton 
number  St/Stmax is plotted in Fig. 10 with the exper- 
imental data of Vogel and Eaton [15]. The step-height 
Reynolds number  :is ReH = 28 000 and the heat flux 
through the heat transfer surface is 270 W m -3. Other 
experimental conditions are listed in Table 1. The 
computed and experimental data show the same gen- 
eral features, i.e. the peak heat transfer rate occurs 
slightly upstream of reattachment (X* = 0) and there 
is a low heat transt~r rate in the recirculation region. 
It is seen that the present non-equil ibrium model 
(Pk ~ e) is in better agreement with the experiment 
than the model .of the local equilibrium model 
(Pk = e). 

The streamwise variations of the local maximum of 
the streamwise turbulent intensity (U--~/U~)max and the 
Reynolds shear stress ( - uv/U0 z)max are compared with 
the experiment of Eaton and Johnston [14] in Fig. 1 I. 
The computed results by two models are qualitatively 
consistent with the experiment. The measurements are 
located between the two calculated curves. It is 
believed that this discrepancy is due to the nonlinear 
representation for the Reynolds stresses. Regarding 
the Reynolds stress, the computational  results by the 
two models show slightly higher values, particularly in 
the region around and upstream of the reattachment 
point. 

6. CONCLUSION 

An improved version of nonlinear low-Reynolds- 
number  k-e model has been developed for which 
allows the calculation of turbulent separated and reat- 
taching flows with heat transfer. The main emphasis 
was placed on the usage of Ry (~ kl/2y/v) instead of 
y+ (= u#/v)  in the low-Reynolds-number model. The 
effects of low-Reynolds near the wall and the non-  
equilibrium effect in the recirculating region away 

0.3 

~.i 0.2 

0.1 

0.0 
0.02 

I'~=> 0.01 

0.0 

Fig. 11. 

f Present model I 
_ _  AKN model 

o o o Eaton & Johnston[14] 

1 
x/x, 

(uu/Uo)max and Comparison of the predicted - -  2 ~/2 
( - -  Ul) /U 2 )max with experiment. 

from the wall were fully incorporated together with 
the wall limiting behavior of the t-equation. In the 
first, the present model was tested against the DNS 
data of a fully developed channel flow. The predicted 
results for k and e reproduced the correct wall limiting 
behaviors of flow fields quite successfully. Further- 
more, the present model predicted the strong adverse 
pressure gradient flow satisfactorily. The validation 
was extended to the flows behind a backward-facing 
step. The effect of non-equil ibrium (Pk ¢: e) was veri- 
fied for calculating the eddy viscosit__y (vt), turbulent  
energy (k) and Reynolds stress ( - u v ) .  The predicted 
results with the present non-equil ibrium model were 
shown to be better agreement with the experiments 
rather than the local equilibrium model (Pk = e). The 
nonlinear model up to second-order expansion was 
also examined and the predicted streamwise velocity 
fluctuations (u 2) were consistent with the experiment 
satisfactorily among others. In particular, the cal- 
culated flow reattachment length (XR) showed excel- 
lent agreement with the experiments and the relevant 
DNS data. For  the prediction of turbulent  heat trans- 
fer near the wall-region of separated and reattaching 
flows, several flow features were calculated and com- 
pared with the experiment. They were found to be 
qualitatively consistent with the experiment. 
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